Development of a parallel Poisson's equation solver with adaptive mesh refinement and its application in field emission prediction

نویسندگان

  • K.-H. Hsu
  • P.-Y. Chen
  • Chieh-Tsan Hung
  • L.-H. Chen
  • Jong-Shinn Wu
چکیده

A parallel electrostatic Poisson’s equation solver coupled with parallel adaptive mesh refinement (PAMR) is developed in this paper. The three-dimensional Poisson’s equation is discretized using the Galerkin finite element method using a tetrahedral mesh. The resulting matrix equation is then solved through the parallel conjugate gradient method using the non-overlapping subdomain-by-subdomain scheme. A PAMR module is coupled with this parallel Poisson’s equation solver to adaptively refine the mesh where the variation of potentials is large. The parallel performance of the parallel Poisson’s equation is studied by simulating the potential distribution of a CNT-based triode-type field emitter. Results with ∼100 000 nodes show that a parallel efficiency of 84.2% is achieved in 32 processors of a PC-cluster system. The field emission properties of a single CNT triodeand tetrode-type field emitter in a periodic cell are computed to demonstrate their potential application in field emission prediction. © 2006 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel adaptive mesh-refining scheme on a three-dimensional unstructured tetrahedral mesh and its applications

The development of a parallel three-dimensional (3-D) adaptive mesh refinement (PAMR) scheme for an unstructured tetrahedral mesh using dynamic domain decomposition on a memory-distributed machine is presented in detail. A memory-saving cell-based data structure is designed such that the resulting mesh information can be readily utilized in both nodeor cell-based numerical methods. The general ...

متن کامل

Fast Finite Element Method Using Multi-Step Mesh Process

This paper introduces a new method for accelerating current sluggish FEM and improving memory demand in FEM problems with high node resolution or bulky structures. Like most of the numerical methods, FEM results to a matrix equation which normally has huge dimension. Breaking the main matrix equation into several smaller size matrices, the solving procedure can be accelerated. For implementing ...

متن کامل

Parallel, Block-Based, Adaptive Mesh Refinement, Finite-Volume Scheme for Solution of Three-Dimensional Favre-Averaged Navier-Stokes Equations

Parallel, Block-Based, Adaptive Mesh Refinement, Finite-Volume Scheme for Solution of Three-Dimensional Favre-Averaged Navier-Stokes Equations Shawn Prasad Masters of Applied Science Graduate Department of Aerospace Engineering University of Toronto 2013 A parallel, block-based, adaptive mesh refinement, finite-volume scheme is developed and validated for the solution of the Favre-Averaged Navi...

متن کامل

Application of Boundera Element Method (Bem) to Two-Dimensional Poisson's Eqation

BEM can be used to solve Poisson's equation if the right hand side of the equation  is constant because it can easily be transformed to an equivalent Laplace equation. However, if the right hand side is not constant, then such a treatment is impossible and part of the equation can not be transformed over the boundary, hence, the whole domain has to be discretized. Although this takes away impor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Physics Communications

دوره 174  شماره 

صفحات  -

تاریخ انتشار 2006